In this paper, we present a Fast Motion Deblurring-Conditional Generative Adversarial Network (FMD-cGAN) that helps in blind motion deblurring of a single image. FMD-cGAN delivers impressive structural similarity and visual appearance after deblurring an image. Like other deep neural network architectures, GANs also suffer from large model size (parameters) and computations. It is not easy to deploy the model on resource constraint devices such as mobile and robotics. With the help of MobileNet based architecture that consists of depthwise separable convolution, we reduce the model size and inference time, without losing the quality of the images. More specifically, we reduce the model size by 3-60x compare to the nearest competitor. The resulting compressed Deblurring cGAN faster than its closest competitors and even qualitative and quantitative results outperform various recently proposed state-of-the-art blind motion deblurring models. We can also use our model for real-time image deblurring tasks. The current experiment on the standard datasets shows the effectiveness of the proposed method.
翻译:在本文中,我们展示了一个快速的脱光-条件生成反转网络(FMD-cGAN),它有助于对单一图像进行盲动分解。 FMD-cGAN在对图像进行分解后提供了令人印象深刻的结构相似性和视觉外观。像其他深层神经网络结构一样,GAN还遭受着巨大的模型大小(参数)和计算的影响。部署诸如移动和机器人等资源约束装置模型并非易事。在以移动网络为基础的结构的帮助下,我们减少了模型大小和推断时间,同时不丧失图像的质量。更具体地说,我们把模型大小比最近的竞争者减少36-60x。由此产生的压缩的Deblurring cGAN比其最近的竞争者更快,甚至质量和数量结果都超越了最近提出的各种状态-艺术失明运动分流模型。我们还可以使用我们的模型进行实时图像分解任务。目前关于标准数据设置的实验显示了拟议方法的有效性。