Object detectors based on sparse object proposals have recently been proven to be successful in the 2D domain, which makes it possible to establish a fully end-to-end detector without time-consuming post-processing. This development is also attractive for 3D object detectors. However, considering the remarkably larger search space in the 3D domain, whether it is feasible to adopt the sparse method in the 3D object detection setting is still an open question. In this paper, we propose SparsePoint, the first sparse method for 3D object detection. Our SparsePoint adopts a number of learnable proposals to encode most likely potential positions of 3D objects and a foreground embedding to encode shared semantic features of all objects. Besides, with the attention module to provide object-level interaction for redundant proposal removal and Hungarian algorithm to supply one-one label assignment, our method can produce sparse and accurate predictions. SparsePoint sets a new state-of-the-art on four public datasets, including ScanNetV2, SUN RGB-D, S3DIS, and Matterport3D. Our code will be publicly available soon.
翻译:基于稀有物体建议的天体探测器最近被证明在 2D 域中是成功的,这使得有可能在没有耗时后处理的情况下建立一个完全端到端的探测器。 这种开发对 3D 对象探测器也具有吸引力。 但是,考虑到 3D 域的搜索空间要大得多,在 3D 对象探测器设置中采用稀有的方法是否可行,仍然是一个未决问题。 在本文中,我们提出了3D 对象探测的第一个稀有方法SparsePoint。 我们的 SparsePoint 采用了一些可学习的建议,以编码最可能存在的 3D 对象位置, 以及用于编码所有对象的共享语义特征的浅地嵌入。此外,除了为冗余建议删除提供目标级互动的注意模块以及匈牙利提供一标签分配的算法之外, 我们的方法可以产生稀少和准确的预测。 sparsepoint 在四个公共数据集上设置了新的状态, 包括 ScanNetV2, SUN RGB-D, S3D, S3D, 和imleport3D。 我们的代码将很快公布。