In recent years, machine learning (ML) algorithms have been deployed in safety-critical and high-stake decision-making, where the fairness of algorithms is of paramount importance. Fairness in ML centers on detecting bias towards certain demographic populations induced by an ML classifier and proposes algorithmic solutions to mitigate the bias with respect to different fairness definitions. To this end, several fairness verifiers have been proposed that compute the bias in the prediction of an ML classifier--essentially beyond a finite dataset--given the probability distribution of input features. In the context of verifying linear classifiers, existing fairness verifiers are limited by accuracy due to imprecise modeling of correlations among features and scalability due to restrictive formulations of the classifiers as SSAT/SMT formulas or by sampling. In this paper, we propose an efficient fairness verifier, called FVGM, that encodes the correlations among features as a Bayesian network. In contrast to existing verifiers, FVGM proposes a stochastic subset-sum based approach for verifying linear classifiers. Experimentally, we show that FVGM leads to an accurate and scalable assessment for more diverse families of fairness-enhancing algorithms, fairness attacks, and group/causal fairness metrics than the state-of-the-art fairness verifiers. We also demonstrate that FVGM facilitates the computation of fairness influence functions as a stepping stone to detect the source of bias induced by subsets of features.
翻译:近年来,机器学习(ML)算法被运用于安全关键和高取量的决策中,而算法的公平性至关重要。在安全关键和高取量的决策中,算法的公平性至关重要。ML的公平性中心在于发现由ML分类师对某些人口群的偏向,并提出了减少对不同公平定义的偏向的算法。为此,提议了数个公平性核查员,将预测ML分类员的偏向性计算在内,其本质超出了有限的数据集的偏向性,并规定了输入的偏向性分布。在核查线性分类员方面,现有的公平性核查员受到准确性的限制,原因是由于以SSAT/SMT公式或采样方式对特性和可缩放性进行不精确的建模,因此分类员对特征和可变性的相关性进行不精确的建模。在本文件中,我们提议了一个高效的公平性校正(称为FVGM),将各种特性的关联性,将各种特性编码成一个巴伊西亚网络。与现有的校验员相比,FVGMGM提出的基于随机性源的分类法的分类法的分类和可用来核查线性分数计算方法,用以核查线性分类。实验性,我们显示FVGGGGGGGM的公平性-GGM的公平性能的公平性能的公平性,也显示了更精确性、更精确性和更精确性、更精确性、更精确性、更精确性、更精确性、更能性、更能性、更能性、更精确性、更精确性、更能性、更能性、更能性、更能性、更能性能性、更能性能性能性能性能性、更能性、更能性、更能性能性、更能性、更能性、更能性、更能性、更能性、更能性、更能性、更能性、更能性能性能性能性能性能性能性能性能性能性、更能性能性能性能性能性能性能性能性能性能性能性能性能性能性能能能能能性能性能性能性能性能性能性能性能性能性能性能