Recently, a surge of face editing techniques have been proposed to employ the pretrained StyleGAN for semantic manipulation. To successfully edit a real image, one must first convert the input image into StyleGAN's latent variables. However, it is still challenging to find latent variables, which have the capacity for preserving the appearance of the input subject (e.g., identity, lighting, hairstyles) as well as enabling meaningful manipulations. In this paper, we present a method to expand the latent space of StyleGAN with additional content features to break down the trade-off between low-distortion and high-editability. Specifically, we proposed a two-branch model, where the style branch first tackles the entanglement issue by the sparse manipulation of latent codes, and the content branch then mitigates the distortion issue by leveraging the content and appearance details from the input image. We confirm the effectiveness of our method using extensive qualitative and quantitative experiments on real face editing and reconstruction tasks.
翻译:最近,有人提议使用经过预先训练的StyleGAN表面编辑技术来进行语义操控。 要成功编辑真实图像, 就必须先将输入图像转换成StyleGAN的潜在变量。 然而, 找到潜在的变量仍然很困难, 这些变量有能力保存输入主题的外观( 如身份、 照明、 发型), 并且能够进行有意义的操控。 在本文中, 我们提出了一个扩大StyleGAN潜在空间的方法, 并增加内容特性, 以打破低扭曲与高编辑之间的平衡。 具体地说, 我们提出了一个双权模式, 由样式处首先处理隐性代码的细小操纵引起的纠缠问题, 而内容处则通过利用输入图像的内容和外观细节来缓解扭曲问题。 我们确认在真实面编辑和重建任务上使用广泛的定性和定量实验方法的有效性 。