We consider the problem of efficiently evaluating a secret polynomial at a given public point, when the polynomial is stored on an untrusted server. The server performs the evaluation and returns a certificate, and the client can efficiently check that the evaluation is correct using some pre-computed keys. Our protocols support two important features: the polynomial itself can be encrypted on the server, and it can be dynamically updated by changing individual coefficients cheaply without redoing the entire setup. As an important application, we show how these new techniques can be used to instantiate a Dynamic Proof of Retrievability (DPoR) for arbitrary outsourced data storage that achieves low server storage size and audit complexity. Our methods rely only on linearly homomorphic encryption and pairings, and preliminary timing results indicate reasonable performance for polynomials with millions of coefficients, and efficient DPoR with for instance 1TB size databases.
翻译:我们考虑的是在一个特定公共点有效评估秘密多面性的问题,当多面性被存储在无人信任的服务器上时。服务器进行评审并返回一份证书,客户可以有效地检查使用某些预编密钥评估是否正确。我们的协议支持两个重要特征:多面性能本身可以在服务器上加密,并且可以通过在不重做整个设置的情况下廉价地改变单个系数来动态更新。作为一个重要应用程序,我们展示了这些新技术如何用于即时使用一个动态的可检索性证据(DPoR),用于实现低服务器存储大小和审计复杂性的任意外包数据存储。我们的方法仅依赖于线性同质加密和配对,初步时间结果显示具有数百万个系数的多元性的合理性,以及高效的DPoR,例如1TB大小的数据库。