A parametric adaptive greedy Latent Space Dynamics Identification (gLaSDI) framework is developed for accurate, efficient, and certified data-driven physics-informed greedy auto-encoder simulators of high-dimensional nonlinear dynamical systems. In the proposed framework, an auto-encoder and dynamics identification models are trained interactively to discover intrinsic and simple latent-space dynamics. To effectively explore the parameter space for optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed error indicator is introduced to search for optimal training samples on the fly, outperforming the conventional predefined uniform sampling. Further, an efficient k-nearest neighbor convex interpolation scheme is employed to exploit local latent-space dynamics for improved predictability. Numerical results demonstrate that the proposed method achieves 121 to 2,658x speed-up with 1 to 5% relative errors for radial advection and 2D Burgers dynamical problems.
翻译:为精确、高效和经认证的数据驱动物理智能、了解贪婪的自动编码模拟器模拟高维非线性动态系统,开发了一个参数性适应性贪婪潜心空间动态识别框架。在拟议框架中,自动编码和动态识别模型经过互动式培训,以发现内在和简单的潜伏空间动态。为了有效探索最佳模型性能的参数空间,引入了适应性贪婪抽样算法,结合物理知情误差指标,以寻找最佳的飞行训练样本,优于常规的预定统一取样。此外,还采用了高效的K-近距离近距离近距离电流干涉机制,利用当地潜伏空间动态提高可预测性。数字结果显示,拟议方法在辐射吸附和2D Burgers动态问题方面达到121至2,658x速度,比差1至5%。