Collusive fraud, in which multiple fraudsters collude to defraud health insurance funds, threatens the operation of the healthcare system. However, existing statistical and machine learning-based methods have limited ability to detect fraud in the scenario of health insurance due to the high similarity of fraudulent behaviors to normal medical visits and the lack of labeled data. To ensure the accuracy of the detection results, expert knowledge needs to be integrated with the fraud detection process. By working closely with health insurance audit experts, we propose FraudAuditor, a three-stage visual analytics approach to collusive fraud detection in health insurance. Specifically, we first allow users to interactively construct a co-visit network to holistically model the visit relationships of different patients. Second, an improved community detection algorithm that considers the strength of fraud likelihood is designed to detect suspicious fraudulent groups. Finally, through our visual interface, users can compare, investigate, and verify suspicious patient behavior with tailored visualizations that support different time scales. We conducted case studies in a real-world healthcare scenario, i.e., to help locate the actual fraud group and exclude the false positive group. The results and expert feedback proved the effectiveness and usability of the approach.


翻译:医保欺诈集体作案威胁着医疗保健系统的正常运作。然而,现有的基于统计和机器学习的方法在医疗保险欺诈检测方面具有局限性,原因是欺诈行为与普通就医行为非常相似,且缺乏标记数据。为确保检测结果的准确性,需要将专业知识与欺诈检测过程相互融合。通过与医疗保险审计专家的紧密合作,我们提出了欺诈审计师,一种在医疗保健领域寻找欺诈集体作案的三阶段可视化分析方法。具体而言,我们首先允许用户交互式构建共同就诊网络,从而全面地建模不同患者之间的就诊关系。其次,设计了一种考虑欺诈可能性强度的改进社区检测算法,以检测可疑的欺诈群体。最后,通过我们的可视化界面,用户可以比较、调查和验证可疑的患者行为,并使用定制的可视化工具支持不同的时间尺度。我们在现实世界的医疗保健场景中进行了案例研究,即帮助定位实际的欺诈团伙并排除虚假阳性团伙。结果和专家反馈证明了该方法的有效性和可用性。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
【2022新书】Python手册,275页pdf
专知会员服务
179+阅读 · 2022年3月18日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
39+阅读 · 2021年11月11日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员