This article addresses the inverse source problem for a nonlocal heat equation involving the fractional Laplacian. The primary goal is to reconstruct the spatial component of the source term from partial observations of the system's state and its time derivative over a subset of the domain. A reconstruction formula for the Fourier coefficients of the unknown source is derived, leveraging the null controllability property of the fractional heat equation when the fractional order lies in the interval $s\in(1/2,1)$. The methodology builds on spectral analysis and Volterra integral equations, providing a robust framework for recovering spatial sources under limited measurement data. Numerical experiments confirm the accuracy and stability of the proposed approach.
翻译:本文研究涉及分数阶拉普拉斯算子的非局部热方程的反源问题。主要目标是通过系统状态及其时间导数在域子集上的部分观测数据,重构源项的空间分量。当分数阶阶数位于区间$s\in(1/2,1)$时,利用分数阶热方程的零可控性特性,推导出未知源项傅里叶系数的重构公式。该方法基于谱分析和Volterra积分方程理论,为有限测量数据下的空间源项恢复提供了鲁棒的理论框架。数值实验验证了所提方法的准确性和稳定性。