Understanding 3D environments semantically is pivotal in autonomous driving applications where multiple computer vision tasks are involved. Multi-task models provide different types of outputs for a given scene, yielding a more holistic representation while keeping the computational cost low. We propose a multi-task model for panoptic segmentation and depth completion using RGB images and sparse depth maps. Our model successfully predicts fully dense depth maps and performs semantic segmentation, instance segmentation, and panoptic segmentation for every input frame. Extensive experiments were done on the Virtual KITTI 2 dataset and we demonstrate that our model solves multiple tasks, without a significant increase in computational cost, while keeping high accuracy performance. Code is available at https://github.com/juanb09111/PanDepth.git
翻译:多任务模型为特定场景提供了不同类型的产出,产生了更全面的代表性,同时保持了计算成本的低水平。我们提议了使用RGB图像和稀薄深度地图进行全光截面和深度完成的多任务模型。我们的模型成功地预测了完全密集的深度地图,并对每个输入框架进行语解分割、实例分割和全光截面。在虚拟KITTI 2数据集上进行了广泛的实验,我们证明我们的模型解决了多种任务,但计算成本没有显著增加,同时保持高精确性能。代码可在https://github.com/juanb09111/PanDepeh.git上查阅。