Short-term forecasts of energy consumption are invaluable for operation of energy systems, including low voltage electricity networks. However, network loads are challenging to predict when highly desegregated to small numbers of customers, which may be dominated by individual behaviours rather than the smooth profiles associated with aggregate consumption. Furthermore, distribution networks are challenged almost entirely by peak loads, and tasks such as scheduling storage and/or demand flexibility maybe be driven by predicted peak demand, a feature that is often poorly characterised by general-purpose forecasting methods. Here we propose an approach to predict the timing and level of daily peak demand, and a data fusion procedure for combining conventional and peak forecasts to produce a general-purpose probabilistic forecast with improved performance during peaks. The proposed approach is demonstrated using real smart meter data and a hypothetical low voltage network hierarchy comprising feeders, secondary and primary substations. Fusing state-of-the-art probabilistic load forecasts with peak forecasts is found to improve performance overall, particularly at smart-meter and feeder levels and during peak hours, where improvement in terms of CRPS exceeds 10%.


翻译:对能源消耗的短期预测对能源系统的运作,包括低电压电力网络的运作来说是宝贵的,然而,网络负荷对于预测何时高度分解给少数客户来说是具有挑战性的,而这种预测可能主要取决于个别行为,而不是与总消费有关的平稳情况;此外,分配网络几乎完全受到高峰负荷的挑战,而诸如排期储存和/或需求灵活性等任务可能是由预测的高峰需求驱动的,一般用途预测方法往往不很好地反映这一特点;在这里,我们提出了一个预测每日高峰需求的时间和水平的方法,以及将常规预测和高峰预测结合起来,以产生一般用途的概率预测,在高峰期提高性能的数据合并程序;提议的方法是使用真正的智能计量数据和假设的低挥发网络等级,包括饲料、二级和初级子站;采用最新预测的预测,可以改善总体业绩,特别是在智能计量和供餐者一级,以及高峰时段,CRPS的改进幅度超过10%。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Expert Aggregation for Financial Forecasting
Arxiv
0+阅读 · 2022年8月15日
Arxiv
0+阅读 · 2022年8月14日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员