The need for matching items with one another while meeting assignment constraints or preferences gave rise to several well-known problems like the stable marriage and roommate problems. While most of the literature on matching problems focuses on a static setting with a fixed number of items, several recent works incorporated time by considering stochastic models, in which items of different classes arrive according to independent Poisson processes and assignment constraints are described by an undirected non-bipartite graph on the classes. In this paper, we prove that the continuous-time Markov chain associated with this model has the same transition diagram as in a product-form queueing model called an order-independent loss queue. This allows us to adapt existing results on order-independent queues to stochastic matching models, and in particular to derive closed-form expressions for several performance metrics, like the waiting probability or the mean matching time, that can be implemented using dynamic programming. Both these formulas and the numerical results that they allow us to derive are used to gain insight into the impact of parameters on performance. In particular, we characterize performance in a so-called heavy-traffic regime in which the number of items of a subset of the classes goes to infinity while items of other classes become scarce.


翻译:在满足派任限制或偏好的同时,需要将项目相互匹配,这引起了几个众所周知的问题,如稳定的婚姻和室友问题。虽然大多数关于匹配问题的文献侧重于固定项目数目的静态设置,但最近通过考虑随机模型的一些工作吸收了时间,其中不同类别的项目根据独立的 Poisson 流程和派任限制到达时,用非定向非双向图对这些类别作了描述。在本文中,我们证明与该模式相关的连续时间马科夫链与一个产品-格式排队模式(称为 " 依赖订单的损失排队 " )中的过渡图相同。这使我们能够将依赖订单的排队现有结果调整为随机匹配模型,特别是为几个性能衡量标准(如等待概率或平均匹配时间)制作封闭式表达方式,可以用动态的编程来实施。这两个公式和它们允许我们获取的数字结果都用于了解参数对绩效的影响。特别是,我们用一个所谓的重折叠式系统来描述独立排队列现有结果,其表现方式是:在紧凑的类别中,紧紧紧的一组项目数量成为其他类别。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月19日
Arxiv
4+阅读 · 2019年2月8日
Arxiv
5+阅读 · 2018年5月28日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员