The increasing popularity of Internet of Everything and small-cell devices has enormously accelerated traffic loads. Consequently, increased bandwidth and high data rate requirements stimulate the operation at the millimeter wave and the Tera-Hertz spectrum bands in the fifth generation (5G) and beyond 5G (B5G) wireless networks. Furthermore, efficient spectrum allocation, maximizing the spectrum utilization, achieving efficient spectrum sharing (SS), and managing the spectrum to enhance the system performance remain challenging. To this end, recent studies have implemented artificial intelligence and machine learning techniques, enabling intelligent and efficient spectrum leveraging. However, despite many recent research advances focused on maximizing utilization of the spectrum bands, achieving efficient sharing, allocation, and management of the enormous available spectrum remains challenging. Therefore, the current article acquaints a comprehensive survey on intelligent SS methodologies for 5G and B5G wireless networks, considering the applications of artificial intelligence for efficient SS. Specifically, a thorough overview of SS methodologies is conferred, following which the various spectrum utilization opportunities arising from the existing SS methodologies in intelligent wireless networks are discussed. Subsequently, to highlight critical limitations of the existing methodologies, recent literature on existing SS methodologies is reviewed in detail, classifying them based on the implemented technology, i.e., cognitive radio, machine learning, blockchain, and multiple other techniques. Moreover, the related SS techniques are reviewed to highlight significant challenges in the B5G intelligent wireless network. Finally, to provide an insight into the prospective research avenues, the article is concluded by presenting several potential research directions and proposed solutions.


翻译:因此,尽管最近许多研究进展侧重于最大限度地利用频谱波,实现高效共享、分配和管理巨大的现有频谱。因此,目前的文章为5G和5G(B5G)无线网络的智能SS方法进行了全面的调查,同时考虑到将人工智能应用于高效SSS,具体地说,对SS方法进行了彻底的概述,随后讨论了智能无线网络中现有SS方法产生的各种频谱利用机会。随后,为了突出现有方法的关键局限性,对现有的SS方法的文献进行了详细审查,将这些技术分为了另一个层次,从而提供了在SIS网络中进行的一项重要研究,从而提供了在SIS网络中进行的一项重要研究,并且根据SIS网络中实施的一项重要研究,并且根据SIS网络中的某些潜在方向,对SIS网络进行了一项重要研究,并且根据SIS网络中的某些潜在技术进行了一项重要研究,并且通过对SIS网络进行了一项重要研究,从而提供了一项重要的基础。

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员