In this paper, we study in-depth the problem of online self-calibration for robust and accurate visual-inertial state estimation. In particular, we first perform a complete observability analysis for visual-inertial navigation systems (VINS) with full calibration of sensing parameters, including IMU and camera intrinsics and IMU-camera spatial-temporal extrinsic calibration, along with readout time of rolling shutter (RS) cameras (if used). We investigate different inertial model variants containing IMU intrinsic parameters that encompass most commonly used models for low-cost inertial sensors. The observability analysis results prove that VINS with full sensor calibration has four unobservable directions, corresponding to the system's global yaw and translation, while all sensor calibration parameters are observable given fully-excited 6-axis motion. Moreover, we, for the first time, identify primitive degenerate motions for IMU and camera intrinsic calibration. Each degenerate motion profile will cause a set of calibration parameters to be unobservable and any combination of these degenerate motions are still degenerate. Extensive Monte-Carlo simulations and real-world experiments are performed to validate both the observability analysis and identified degenerate motions, showing that online self-calibration improves system accuracy and robustness to calibration inaccuracies. We compare the proposed online self-calibration on commonly-used IMUs against the state-of-art offline calibration toolbox Kalibr, and show that the proposed system achieves better consistency and repeatability. Based on our analysis and experimental evaluations, we also provide practical guidelines for how to perform online IMU-camera sensor self-calibration.
翻译:在本文中,我们深入研究了在线自我校准问题,以进行稳健和准确的视觉-内分泌状态估算。特别是,我们首先对视觉-内皮导航系统进行全面的观察力分析,对包括IMU和相机内在参数和IMU-Camera空间-时空外部校准在内的各种遥感参数进行完全校准,对IMU进行全校正,同时使用滚动百叶窗(RS)相机(如果使用的话)读出时间。我们调查了包含IMU内在参数的不同惯性模型模型变量的不同惯性模型变异,这些参数包含低成本惯性惯性传感器传感器最常用的模型。观察力分析结果证明,具有全传感器校准的VINS有四个不可观测的方向,与该系统的全球轨迹和翻译相对应,而所有传感器校准参数都具有可观察性。此外,我们首次为IMU和相机内部校正提供了最原始的动作(如果使用的话 ) 。我们每一份变色调运动的校准参数将无法观察,而且任何这种变校正动作的组合都是不断腐蚀的。