Construction of tight confidence regions and intervals is central to statistical inference and decision making. This paper develops new theory showing minimum average volume confidence regions for categorical data. More precisely, consider an empirical distribution $\widehat{\boldsymbol{p}}$ generated from $n$ iid realizations of a random variable that takes one of $k$ possible values according to an unknown distribution $\boldsymbol{p}$. This is analogous to a single draw from a multinomial distribution. A confidence region is a subset of the probability simplex that depends on $\widehat{\boldsymbol{p}}$ and contains the unknown $\boldsymbol{p}$ with a specified confidence. This paper shows how one can construct minimum average volume confidence regions, answering a long standing question. We also show the optimality of the regions directly translates to optimal confidence intervals of linear functionals such as the mean, implying sample complexity and regret improvements for adaptive machine learning algorithms.


翻译:构建紧信区和间隔是统计推论和决策的核心。 本文开发了新的理论, 显示绝对数据的最低平均数量信任区。 更准确地说, 考虑实证分配 $\ loberhat_ boldsymbol{ p ⁇ $ $ iid 实现一个随机变量产生的 $\ boldsymbol{ p $ 美元, 根据未知的分配 $\ boldsymbol{ p} $ 来计算一个可能值的 $k美元 。 这类似于从多元分布中提取的单数 。 信任区是概率简单x 的子集, 取决于 $\ 全域 hat_ boldsysymbol{ p } $, 含有未知的 $\ boldsysymsbol{ p} 美元, 并带有特定的信心。 本文展示了如何构建最小的平均数量信任区, 回答一个长期的问题。 我们还展示了区域的最佳性, 直接转换成线性功能的最佳信任度, 如平均值, 意味着适应机器学习算法的样本复杂度和遗憾改进。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【KDD2020】最小方差采样用于图神经网络的快速训练
专知会员服务
27+阅读 · 2020年7月13日
专知会员服务
159+阅读 · 2020年1月16日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【LeetCode 136】 关关的刷题日记32 Single Number
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月24日
Arxiv
0+阅读 · 2021年3月23日
Arxiv
0+阅读 · 2021年3月22日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【KDD2020】最小方差采样用于图神经网络的快速训练
专知会员服务
27+阅读 · 2020年7月13日
专知会员服务
159+阅读 · 2020年1月16日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【LeetCode 136】 关关的刷题日记32 Single Number
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员