In recent years machine learning algorithms, and more specifically deep learning algorithms, have been widely used in many fields, including cyber security. However, machine learning systems are vulnerable to adversarial attacks, and this limits the application of machine learning, especially in non-stationary, adversarial environments, such as the cyber security domain, where actual adversaries (e.g., malware developers) exist. This paper comprehensively summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques and illuminates the risks they pose. First, the adversarial attack methods are characterized based on their stage of occurrence, and the attacker's goals and capabilities. Then, we categorize the applications of adversarial attack and defense methods in the cyber security domain. Finally, we highlight some characteristics identified in recent research and discuss the impact of recent advancements in other adversarial learning domains on future research directions in the cyber security domain. This paper is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain, map them in a unified taxonomy, and use the taxonomy to highlight future research directions.


翻译:近年来,在包括网络安全在内的许多领域广泛使用了机器学习算法,更具体地说是深层次的学习算法。然而,机器学习系统很容易受到对抗性攻击,这限制了机器学习的应用,特别是在非静止的、对抗性的环境中,例如网络安全领域,实际对手(如恶意软件开发者)在其中存在;本文件全面概述了关于以机器学习技术为基础对安全解决办法进行对抗性攻击的最新研究,并说明了这些攻击方法构成的风险。首先,对敌对性攻击方法根据其发生阶段和攻击者的目标和能力加以定性。然后,我们将对抗性攻击和防御方法在网络安全领域的应用分类。最后,我们强调最近研究确定的一些特点,并讨论其他对抗性学习领域最近的进展对网络安全领域未来研究方向的影响。本文件首先讨论在网络安全领域实施端对端对抗性攻击的独特挑战,用统一的分类法绘制这些方法的特征,并使用分类法来突出未来的研究方向。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
38+阅读 · 2020年3月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
14+阅读 · 2020年10月26日
Arxiv
38+阅读 · 2020年3月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Top
微信扫码咨询专知VIP会员