Applications of machine learning (ML) models and convolutional neural networks (CNNs) have been rapidly increased. Although ML models provide high accuracy in many applications, recent investigations show that such networks are highly vulnerable to adversarial attacks. The black-box adversarial attack is one type of attack that the attacker does not have any knowledge about the model or the training dataset. In this paper, we propose a novel approach to generate a black-box attack in sparse domain whereas the most important information of an image can be observed. Our investigation shows that large sparse components play a critical role in the performance of the image classifiers. Under this presumption, to generate adversarial example, we transfer an image into a sparse domain and put a threshold to choose only k largest components. In contrast to the very recent works that randomly perturb k low frequency (LoF) components, we perturb k largest sparse (LaS)components either randomly (query-based) or in the direction of the most correlated sparse signal from a different class. We show that LaS components contain some middle or higher frequency components information which can help us fool the classifiers with a fewer number of queries. We also demonstrate the effectiveness of this approach by fooling the TensorFlow Lite (TFLite) model of Google Cloud Vision platform. Mean squared error (MSE) and peak signal to noise ratio (PSNR) are used as quality metrics. We present a theoretical proof to connect these metrics to the level of perturbation in the sparse domain. We tested our adversarial examples to the state-of-the-art CNNs and support vector machine (SVM) classifiers on color and grayscale image datasets. The results show the proposed method can highly increase the misclassification rate of the classifiers.


翻译:机器学习模型和神经神经网络(CNNs)的应用迅速增加。 虽然 ML 模型在许多应用程序中提供高度准确性, 但最近的调查显示, 这样的网络极易受到对抗性攻击。 黑盒对抗攻击是一种攻击, 攻击者对模型或培训数据集一无所知。 在本文中, 我们提出一种新的方法, 在稀疏域生成黑盒攻击, 而图像中最重要的信息可以观测。 我们的调查显示, 大量稀释组件在图像分类器的性能中扮演着关键角色。 根据这一假设, 生成对抗性实例, 我们将图像转移到一个稀疏的域, 并设定一个仅选择 k最大组件的门槛。 与攻击者对模型或低频( LOF) 组件没有任何了解的最近工程相比, 我们对最稀疏( LAS) 的随机( 基基) 或对不同类别最相近的低频度信号方向进行测试。 我们显示, LaS 组件包含一些中或更高频级的元数据, 帮助我们在图像- 图像- Ral 服务器 中以较低 方法 显示这些图像- 的图像- 的图像平台 。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
4+阅读 · 2018年4月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员