We propose to estimate 3D human pose from multi-view images and a few IMUs attached at person's limbs. It operates by firstly detecting 2D poses from the two signals, and then lifting them to the 3D space. We present a geometric approach to reinforce the visual features of each pair of joints based on the IMUs. This notably improves 2D pose estimation accuracy especially when one joint is occluded. We call this approach Orientation Regularized Network (ORN). Then we lift the multi-view 2D poses to the 3D space by an Orientation Regularized Pictorial Structure Model (ORPSM) which jointly minimizes the projection error between the 3D and 2D poses, along with the discrepancy between the 3D pose and IMU orientations. The simple two-step approach reduces the error of the state-of-the-art by a large margin on a public dataset. Our code will be released at https://github.com/CHUNYUWANG/imu-human-pose-pytorch.


翻译:我们建议从多视图图像和人肢上附着的几部三维人姿势图象来估计三维人姿势。 它首先从两个信号中检测二维人姿势, 然后再将其提升到三维空间。 我们提出了一个几何方法, 以基于以IMUs为基础的每对关节的视觉特征强化。 这明显提高了二维人姿势的估测准确度, 特别是在一个关节被隐蔽的情况下。 我们称之为“ 定向正规化网络 ” ( ORN ) 。 然后, 我们通过定向正规化的皮层结构模型( ORPSM) 将多视图 2D 向三维空间展示的多维人姿势 2D, 从而将三维和二维之间的投影误差加在一起, 3D 姿势和 IMU 方向之间的偏差。 简单的两步方法将状态的误差降低公共数据集上一个大边缘值。 我们的代码将在 https://github.com/ CHUNUWANG/ im- hu- plut- pytorchn- pytorch 上发布 。

0
下载
关闭预览

相关内容

【2020新书】C++20 特性 第二版,A Problem-Solution Approach
专知会员服务
58+阅读 · 2020年4月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2017年12月26日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员