We study a finite-horizon restless multi-armed bandit problem with multiple actions, dubbed R(MA)^2B. The state of each arm evolves according to a controlled Markov decision process (MDP), and the reward of pulling an arm depends on both the current state of the corresponding MDP and the action taken. The goal is to sequentially choose actions for arms so as to maximize the expected value of the cumulative rewards collected. Since finding the optimal policy is typically intractable, we propose a computationally appealing index policy which we call Occupancy-Measured-Reward Index Policy. Our policy is well-defined even if the underlying MDPs are not indexable. We prove that it is asymptotically optimal when the activation budget and number of arms are scaled up, while keeping their ratio as a constant. For the case when the system parameters are unknown, we develop a learning algorithm. Our learning algorithm uses the principle of optimism in the face of uncertainty and further uses a generative model in order to fully exploit the structure of Occupancy-Measured-Reward Index Policy. We call it the R(MA)^2B-UCB algorithm. As compared with the existing algorithms, R(MA)^2B-UCB performs close to an offline optimum policy, and also achieves a sub-linear regret with a low computational complexity. Experimental results show that R(MA)^2B-UCB outperforms the existing algorithms in both regret and run time.


翻译:我们用多种行动研究一个不固定的松散多武装强盗问题,称为R(MA)2B。每个臂的状态根据一个受控的Markov决定程序(MDP)而演变,拉动手臂的奖励取决于相应的MDP和采取的行动的当前状况。目标是按顺序选择武器行动,以便尽可能扩大累积奖励的预期价值。由于找到最佳政策通常是棘手的,我们提议了一个具有计算吸引力的指数政策,我们称之为Occupacy-Measured-Reward Index Policy。即使基本的MDP无法索引化,我们的政策也是很明确的。我们证明,当激活预算和武器数量增加时,拉动的奖励是微不足道的,同时保持其比率不变。对于系统参数未知的情况,我们开发了一种学习算法。我们学习算法在面对不确定性时使用乐观原则,并进一步使用一种基因化模型,以便充分利用Occup-Meuriz-Reward Index 政策的结构。我们称,在最佳预算时,我们用RMA2 和现有亚运算法进行一种不精确的亚。我们称为R-MA的亚。我们用亚的亚的算算。我们用亚的算法进行一个比亚的亚的算。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员