This paper proposes various new analysis techniques for Bayes networks in which conditional probability tables (CPTs) may contain symbolic variables. The key idea is to exploit scalable and powerful techniques for synthesis problems in parametric Markov chains. Our techniques are applicable to arbitrarily many, possibly dependent parameters that may occur in various CPTs. This lifts the severe restrictions on parameters, e.g., by restricting the number of parametrized CPTs to one or two, or by avoiding parameter dependencies between several CPTs, in existing works for parametric Bayes networks (pBNs). We describe how our techniques can be used for various pBN synthesis problems studied in the literature such as computing sensitivity functions (and values), simple and difference parameter tuning, ratio parameter tuning, and minimal change tuning. Experiments on several benchmarks show that our prototypical tool built on top of the probabilistic model checker Storm can handle several hundreds of parameters.


翻译:本文为贝叶斯网络提出了各种新的分析技术,其中有条件概率表(CPTs)可能包含象征性变量。关键的想法是利用可扩缩和强大的技术来综合参数马可夫链的合成问题。我们的技术适用于各种CPT中可能出现的许多任意的、可能依赖的参数。这解除了对参数的严格限制,例如,将参数的参数限制在一个或两个,或避免若干CPTs之间的参数依赖性,在参数贝兹网络的现有工作(pBNs)中。我们描述了如何将我们的技术用于处理在文献中研究的各种pBN合成问题,例如计算敏感功能(和价值)、简单和差异参数调整、比率参数调整和微小变化调整。几个基准的实验表明,在概率模型检查器暴风中,我们建立起来的原型工具可以处理数百个参数。

0
下载
关闭预览

相关内容

预训练语言模型fine-tuning近期进展概述
专知会员服务
38+阅读 · 2021年4月9日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
霍普金斯《操作系统原理》2020课程,不可错过!
专知会员服务
36+阅读 · 2020年10月27日
专知会员服务
71+阅读 · 2020年9月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月22日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
预训练语言模型fine-tuning近期进展概述
专知会员服务
38+阅读 · 2021年4月9日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
霍普金斯《操作系统原理》2020课程,不可错过!
专知会员服务
36+阅读 · 2020年10月27日
专知会员服务
71+阅读 · 2020年9月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员