The recent WSNet [1] is a new model compression method through sampling filterweights from a compact set and has demonstrated to be effective for 1D convolutionneural networks (CNNs). However, the weights sampling strategy of WSNet ishandcrafted and fixed which may severely limit the expression ability of the resultedCNNs and weaken its compression ability. In this work, we present a novel auto-sampling method that is applicable to both 1D and 2D CNNs with significantperformance improvement over WSNet. Specifically, our proposed auto-samplingmethod learns the sampling rules end-to-end instead of being independent of thenetwork architecture design. With such differentiable weight sampling rule learning,the sampling stride and channel selection from the compact set are optimized toachieve better trade-off between model compression rate and performance. Wedemonstrate that at the same compression ratio, our method outperforms WSNetby6.5% on 1D convolution. Moreover, on ImageNet, our method outperformsMobileNetV2 full model by1.47%in classification accuracy with25%FLOPsreduction. With the same backbone architecture as baseline models, our methodeven outperforms some neural architecture search (NAS) based methods such asAMC [2] and MNasNet [3].


翻译:最近的WSNet [1] 是一个新的模型压缩方法,通过一组紧凑的抽样过滤器进行取样,并证明对1D进化网络(CNNs)有效。然而,WSNet的加权抽样战略是手动和固定的,可能严重限制结果CNN的表达能力,削弱压缩能力。在这项工作中,我们提出了一个适用于1D和2DCNN的新型自动抽样方法,其性能比WSNet明显改进。具体地说,我们提议的自动抽样方法学习了从端到端的抽样规则,而不是独立于网络结构设计。在进行这种不同的加权抽样规则学习后,从该组中取样和频道选择的重量战略可能会严重限制结果CNN的表达能力,并削弱其压缩能力。在这项工作中,我们提出了一种适用于1DCNNISNet6.5%的新的自动抽样方法。此外,在图像网络上,我们的方法比WSNet2全模范模型的全模范化,而不是独立于网络结构设计设计设计。在1.47 %NA2中,从该组取样和频道选择的精准性模型,作为基础结构的模型,[ASOM3] 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Learning Discriminative Model Prediction for Tracking
Arxiv
3+阅读 · 2019年3月15日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
6+阅读 · 2018年2月8日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员