News recommendation is critical for personalized news access. Existing news recommendation methods usually infer users' personal interest based on their historical clicked news, and train the news recommendation models by predicting future news clicks. A core assumption behind these methods is that news click behaviors can indicate user interest. However, in practical scenarios, beyond the relevance between user interest and news content, the news click behaviors may also be affected by other factors, such as the bias of news presentation in the online platform. For example, news with higher positions and larger sizes are usually more likely to be clicked. The bias of clicked news may bring noises to user interest modeling and model training, which may hurt the performance of the news recommendation model. In this paper, we propose a bias-aware personalized news recommendation method named DebiasRec, which can handle the bias information for more accurate user interest inference and model training. The core of our method includes a bias representation module, a bias-aware user modeling module, and a bias-aware click prediction module. The bias representation module is used to model different kinds of news bias and their interactions to capture their joint effect on click behaviors. The bias-aware user modeling module aims to infer users' debiased interest from the clicked news articles by using their bias information to calibrate the interest model. The bias-aware click prediction module is used to train a debiased news recommendation model from the biased click behaviors, where the click score is decomposed into a preference score indicating user's interest in the news content and a news bias score inferred from its different bias features. Experiments on two real-world datasets show that our method can effectively improve the performance of news recommendation.
翻译:个人化新闻访问建议至关重要。 现有的新闻建议方法通常根据历史点击新闻来推断用户的个人兴趣, 并通过预测未来新闻点击来培训新闻建议模式。 这些方法的核心假设是, 点击新闻的行为可以显示用户的兴趣。 但是, 在实际假设中, 除了用户兴趣和新闻内容的相关性之外, 点击新闻的行为还可能受到其他因素的影响, 例如在线平台中新闻展示的偏向性。 例如, 通常更高级别和较大规模的新闻更可能点击。 点击新闻的偏向可能会给用户兴趣带来噪音, 建模和示范培训, 可能会损害新闻建议模式的性能。 在本文中,我们提出一个偏向性个人化的新闻建议方法, 名为Debias Rec, 它可以处理偏向性信息, 以便更准确的用户引用。 我们的方法核心包括一个偏向代表模块, 一个偏向型用户偏向型的偏向型用户模型模拟模型, 以及一个偏向型的偏向性预测模块。 偏向代表模块用来模拟不同种类的新闻偏向, 和他们的互动会损害性地影响新闻建议。 使用用户偏向的偏向性分析工具,, 通过点击用户的偏向性分析工具, 来显示其偏向偏向性选择的偏向方向,, 用户的偏向方向分析,, 将显示其偏向, 方向的偏向性分析, 用户的偏向, 以偏向, 方向的偏向性分析, 方向的偏向性分析, 方向的偏向性选择 以用户的偏向, 方向的偏向性分析,, 方向显示其偏向, 。