High-dimensional black-box optimisation remains an important yet notoriously challenging problem. Despite the success of Bayesian optimisation methods on continuous domains, domains that are categorical, or that mix continuous and categorical variables, remain challenging. We propose a novel solution -- we combine local optimisation with a tailored kernel design, effectively handling high-dimensional categorical and mixed search spaces, whilst retaining sample efficiency. We further derive convergence guarantee for the proposed approach. Finally, we demonstrate empirically that our method outperforms the current baselines on a variety of synthetic and real-world tasks in terms of performance, computational costs, or both.
翻译:高维黑盒优化仍然是一个重要但臭名昭著的具有挑战性的问题。 尽管巴伊西亚优化方法在连续领域取得了成功,但绝对的或混合连续和绝对变量的领域仍然具有挑战性。 我们提出了一个新颖的解决办法:我们把本地优化与定制的内核设计相结合,有效地处理高维绝对和混合搜索空间,同时保留样本效率。我们进一步为拟议方法取得趋同保证。最后,我们从经验上证明,我们的方法在性能、计算成本或两者两方面都超过了当前各种合成和现实世界任务的基准。