For computing efficient approximate designs of multifactor experiments, we propose a simple algorithm based on adaptive exploration of the grid of all combinations of factor levels. We demonstrate that the algorithm significantly outperforms several state-of-the-art competitors for problems with discrete, continuous, as well as mixed factors. Importantly, we provide a free R code that permits direct verification of the numerical results and allows the researchers to easily compute optimal or nearly-optimal experimental designs for their own statistical models.


翻译:为了计算多要素实验的高效近似设计,我们建议一种简单的算法,其基础是对所有要素水平组合网格的适应性探索。我们证明算法在离散、连续和混合因素等问题上大大优于数位最先进的竞争者。重要的是,我们提供了免费的 R 代码,允许直接核实数字结果,使研究人员能够方便地为其自己的统计模型计算最佳或近乎最佳的实验设计。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【2020新书】操作反模式: DevOps解决方案, 322页pdf
专知会员服务
31+阅读 · 2020年11月8日
专知会员服务
17+阅读 · 2020年9月6日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Optimal Policies Tend to Seek Power
Arxiv
0+阅读 · 2021年6月1日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【2020新书】操作反模式: DevOps解决方案, 322页pdf
专知会员服务
31+阅读 · 2020年11月8日
专知会员服务
17+阅读 · 2020年9月6日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员