The existence of a unique Augustin mean and its invariance under the Augustin operator are established for arbitrary input distributions with finite Augustin information for channels with countably generated output $\sigma$-algebras. The existence is established by representing the conditional R\'enyi divergence as a lower semicontinuous and convex functional in an appropriately chosen uniformly convex space and then invoking the Banach--Saks property in conjunction with the lower semicontinuity and the convexity. A new family of operators is proposed to establish the invariance of the Augustin mean under the Augustin operator for orders greater than one. Some members of this new family strictly decrease the conditional R\'enyi divergence, when applied to the second argument of the divergence, unless the second argument is a fixed point of the Augustin operator.
翻译:Augustin操作员的独有奥古斯丁平均值的存在及其在Augustin操作员的惯用性被确定为任意输入分布,其输入源信息有限,其输出量可观的频道的奥古斯丁信息为 $\ sigma$-algebras, 其存在通过将条件的 R\'enyi 差异作为在适当选择的统一锥体空间中较低的半连续和混凝土功能,然后援引Banach-Saks 财产与较低半连续性和共产性。 提议一个新的操作员家族在奥古斯丁操作员的操作员下确定Augustin 的惯性, 意思是订单大于一个。 这个新家族的一些成员在应用第二个差异论点时严格减少条件的 R\'enyi 差异, 除非第二个论点是奥古斯丁操作员的固定点。