Recently, extracting data-driven governing laws of dynamical systems through deep learning frameworks has gained a lot of attention in various fields. Moreover, a growing amount of research work tends to transfer deterministic dynamical systems to stochastic dynamical systems, especially those driven by non-Gaussian multiplicative noise. However, lots of log-likelihood based algorithms that work well for Gaussian cases cannot be directly extended to non-Gaussian scenarios which could have high error and low convergence issues. In this work, we overcome some of these challenges and identify stochastic dynamical systems driven by $\alpha$-stable L\'evy noise from only random pairwise data. Our innovations include: (1) designing a deep learning approach to learn both drift and diffusion coefficients for L\'evy induced noise with $\alpha$ across all values, (2) learning complex multiplicative noise without restrictions on small noise intensity, (3) proposing an end-to-end complete framework for stochastic systems identification under a general input data assumption, that is, $\alpha$-stable random variable. Finally, numerical experiments and comparisons with the non-local Kramers-Moyal formulas with moment generating function confirm the effectiveness of our method.
翻译:最近,通过深层学习框架提取数据驱动的动态系统法则在各个领域引起了大量关注。此外,越来越多的研究工作往往将确定性动态系统转移到随机对齐数据驱动的随机动态系统,特别是由非加西语多种复制噪音驱动的系统。然而,许多对高西语案例行之有效的基于日志的算法不能直接扩大到可能存在高西语高西语高西语高校正的假设情况,这种假设可能存在高误差和低趋同问题。在这项工作中,我们克服了其中一些挑战,从随机对齐数据中找出了由美元-alpha$-可控L\'evy噪声驱动的随机动态系统。我们的创新包括:(1) 设计一种深层次的学习方法,学习L'vy 诱导噪音的漂移和扩散系数,并且在所有价值中都使用$-alphapha美元;(2) 在不限制小噪音强度的情况下学习复杂的多复制噪音;(3) 在一般输入数据假设下,建议一个端至端完整的系统识别框架,即, $-alpha-fain-stable lvy vy volucal fal resm fal sal conviewact sal sal sal sal sal sal sy surviewactations commal sal surviewmal commal.