Inverse scattering aims to infer information about a hidden object by using the received scattered waves and training data collected from forward mathematical models. Recent advances in computing have led to increasing attention towards functional inverse inference, which can reveal more detailed properties of a hidden object. However, rigorous studies on functional inverse, including the reconstruction of the functional input and quantification of uncertainty, remain scarce. Motivated by an inverse scattering problem where the objective is to infer the functional input representing the refractive index of a bounded scatterer, a new Bayesian framework is proposed. It contains a surrogate model that takes into account the functional inputs directly through kernel functions, and a Bayesian procedure that infers functional inputs through the posterior distribution. Furthermore, the proposed Bayesian framework is extended to reconstruct functional inverse by integrating multi-fidelity simulations, including a high-fidelity simulator solved by finite element methods and a low-fidelity simulator called the Born approximation. When compared with existing alternatives developed by finite basis expansion, the proposed method provides more accurate functional recoveries with smaller prediction variations.


翻译:反演散射旨在通过使用从正向数学模型收集的散射波和训练数据来推断隐藏对象的信息。随着计算机技术的不断进步,对函数反向推断的关注越来越多,因为它可以揭示隐藏对象的更详细的属性。然而,关于函数反向推断的严格研究,包括对功能输入的重建和不确定性的量化,仍然很少。在一个反向散射问题的推动下,旨在推断代表有界散射体的折射率的功能输入,提出了一种新的贝叶斯框架。它包含一个代理模型,通过内核函数直接考虑功能输入,以及一个通过后验分布推断功能输入的贝叶斯过程。此外,将多重逼真模拟,包括有限元方法求解的高逼真模拟器和称为波恩近似的低逼真模拟器,整合到所提出的贝叶斯框架中,以重建函数反演。与使用有限点基函数扩展的现有替代方法相比,所提出的方法提供更准确的功能恢复,具有更小的预测变异性。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月16日
Arxiv
12+阅读 · 2021年5月3日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员