Accurate road topology reasoning is critical for autonomous driving, enabling effective navigation and adherence to traffic regulations. Central to this task are lane perception and topology reasoning. However, existing methods typically focus on either lane detection or Lane-to-Lane (L2L) topology reasoning, often \textit{neglecting} Lane-to-Traffic-element (L2T) relationships or \textit{failing} to optimize these tasks jointly. Furthermore, most approaches either overlook relational modeling or apply it in a limited scope, despite the inherent spatial relationships among road elements. We argue that relational modeling is beneficial for both perception and reasoning, as humans naturally leverage contextual relationships for road element recognition and their connectivity inference. To this end, we introduce relational modeling into both perception and reasoning, \textit{jointly} enhancing structural understanding. Specifically, we propose: 1) a relation-aware lane detector, where our geometry-biased self-attention and \curve\ cross-attention refine lane representations by capturing relational dependencies; 2) relation-enhanced topology heads, including a geometry-enhanced L2L head and a cross-view L2T head, boosting reasoning with relational cues; and 3) a contrastive learning strategy with InfoNCE loss to regularize relationship embeddings. Extensive experiments on OpenLane-V2 demonstrate that our approach significantly improves both detection and topology reasoning metrics, achieving +3.1 in DET$_l$, +5.3 in TOP$_{ll}$, +4.9 in TOP$_{lt}$, and an overall +4.4 in OLS, setting a new state-of-the-art. Code will be released.
翻译:精确的道路拓扑推理对于自动驾驶至关重要,它能够实现有效的导航并遵守交通规则。此任务的核心是车道线感知与拓扑推理。然而,现有方法通常侧重于车道线检测或车道线到车道线(L2L)拓扑推理,常常*忽视*车道线到交通元素(L2T)的关系,或*未能*对这些任务进行联合优化。此外,尽管道路元素之间存在固有的空间关系,大多数方法要么忽视了关系建模,要么仅在有限范围内应用它。我们认为,关系建模对感知和推理都有益处,因为人类自然地利用上下文关系来进行道路元素识别及其连通性推断。为此,我们将关系建模引入感知和推理中,*联合*增强对结构的理解。具体而言,我们提出:1)一个关系感知的车道线检测器,其中我们提出的几何偏置自注意力与曲线交叉注意力通过捕捉关系依赖来精炼车道线表征;2)关系增强的拓扑头,包括一个几何增强的L2L头和一个跨视图的L2T头,利用关系线索提升推理能力;以及3)一种使用InfoNCE损失的对比学习策略,用于规范化关系嵌入。在OpenLane-V2数据集上进行的大量实验表明,我们的方法显著提升了检测和拓扑推理的各项指标,在DET$_l$上提升+3.1,在TOP$_{ll}$上提升+5.3,在TOP$_{lt}$上提升+4.9,并在整体OLS上提升+4.4,创造了新的最优性能。代码将开源。