Sports betting's recent federal legalisation in the USA coincides with the golden age of machine learning. If bettors can leverage data to reliably predict the probability of an outcome, they can recognise when the bookmaker's odds are in their favour. As sports betting is a multi-billion dollar industry in the USA alone, identifying such opportunities could be extremely lucrative. Many researchers have applied machine learning to the sports outcome prediction problem, generally using accuracy to evaluate the performance of predictive models. We hypothesise that for the sports betting problem, model calibration is more important than accuracy. To test this hypothesis, we train models on NBA data over several seasons and run betting experiments on a single season, using published odds. We show that optimising the predictive model for calibration leads to greater returns than optimising for accuracy, on average (return on investment of $+34.69\%$ versus $-35.17\%$) and in the best case ($+36.93\%$ versus $+5.56\%$). These findings suggest that for sports betting (or any probabilistic decision-making problem), calibration is a more important metric than accuracy. Sports bettors who wish to increase profits should therefore optimise their predictive model for calibration.
翻译:暂无翻译