Matching contactless fingerprints or finger photos to contact-based fingerprint impressions has received increased attention in the wake of COVID-19 due to the superior hygiene of the contactless acquisition and the widespread availability of low cost mobile phones capable of capturing photos of fingerprints with sufficient resolution for verification purposes. This paper presents an end-to-end automated system, called C2CL, comprised of a mobile finger photo capture app, preprocessing, and matching algorithms to handle the challenges inhibiting previous cross-matching methods; namely i) low ridge-valley contrast of contactless fingerprints, ii) varying roll, pitch, yaw, and distance of the finger to the camera, iii) non-linear distortion of contact-based fingerprints, and vi) different image qualities of smartphone cameras. Our preprocessing algorithm segments, enhances, scales, and unwarps contactless fingerprints, while our matching algorithm extracts both minutiae and texture representations. A sequestered dataset of 9,888 contactless 2D fingerprints and corresponding contact-based fingerprints from 206 subjects (2 thumbs and 2 index fingers for each subject) acquired using our mobile capture app is used to evaluate the cross-database performance of our proposed algorithm. Furthermore, additional experimental results on 3 publicly available datasets show substantial improvement in the state-of-the-art for contact to contactless fingerprint matching (TAR in the range of 96.67% to 98.30% at FAR=0.01%).
翻译:在CCOVID-19之后,由于无接触者的获取的卫生程度较高,而且广泛提供低成本移动电话,能够为核查目的以足够分辨率获取指纹照片以获取指纹照片以进行核查,因此C2CL是一个端对端自动系统,称为C2CL,由移动手指照片捕捉应用程序、预处理和匹配算法组成,以处理阻碍以往交叉匹配方法的挑战;即,由于无接触的指纹与CCOVID-19的对比较低,COVID-19越来越受到更多的关注;由于无接触者的卫生程度较高,而且能够广泛提供低成本移动电话,能够为核查目的以足够分辨率获取指纹的照片照片照片的照片。我们预先处理的算法部分、增强、比例和无冲击的不接触指纹,同时我们匹配的算法提取了细微和纹理等方法;一个有9 8888个无接触的指纹的密封数据集,二)手指与相机的距离不同,三号手指与相机的距离不同,三号指纹非线扭曲,三号指纹的指纹非线扭曲,使用我们的移动指纹指纹的指纹非线变换,用于在公开采集中,三号LALA3级的升级的附加测试中,用于评估实质性数据库中的拟议BDLA3级对比结果。