Pathology is practiced by visual inspection of histochemically stained slides. Most commonly, the hematoxylin and eosin (H&E) stain is used in the diagnostic workflow and it is the gold standard for cancer diagnosis. However, in many cases, especially for non-neoplastic diseases, additional "special stains" are used to provide different levels of contrast and color to tissue components and allow pathologists to get a clearer diagnostic picture. In this study, we demonstrate the utility of supervised learning-based computational stain transformation from H&E to different special stains (Masson's Trichrome, periodic acid-Schiff and Jones silver stain) using tissue sections from kidney needle core biopsies. Based on evaluation by three renal pathologists, followed by adjudication by a fourth renal pathologist, we show that the generation of virtual special stains from existing H&E images improves the diagnosis in several non-neoplastic kidney diseases sampled from 58 unique subjects. A second study performed by three pathologists found that the quality of the special stains generated by the stain transformation network was statistically equivalent to those generated through standard histochemical staining. As the transformation of H&E images into special stains can be achieved within 1 min or less per patient core specimen slide, this stain-to-stain transformation framework can improve the quality of the preliminary diagnosis when additional special stains are needed, along with significant savings in time and cost, reducing the burden on healthcare system and patients.


翻译:通过直观检查直系化学染色幻灯片来实践病理学。最常见的是,在诊断工作流程中使用了血氧素和eosin(H&E)污点,这是癌症诊断的金本位。然而,在许多情况下,特别是对于非肾上腺疾病,还使用额外的“特殊污点”为组织组成部分提供不同水平的对比度和颜色,使病理学家能够更清晰的诊断图象。在这项研究中,我们展示了将基于学习的计算污点从H&E转变为不同的特殊污点(Masson的Trichrome、定期酸-Schiff和Jones银色)的有用性。使用肾上腺针核心生物细胞细胞的组织部分。然而,根据三位肾上病理学家的评估,继而由第四肾上腺病理学家作出的裁决,我们表明,从现有H&E图像生成的虚拟特殊污点改善了从58个独特主题取样的几项非肾上性肾病的诊断。由三位病理学家进行的第二项研究发现,在特殊病理学体系内降低特殊污点的污点质量质量质量质量,在特殊性转变过程中,在统计学上可以与通过标准化的血质化模型中实现。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Nature 一周论文导读 | 2019 年 6 月 27 日
科研圈
8+阅读 · 2019年7月7日
Nature 一周论文导读 | 2019 年 5 月 30 日
科研圈
15+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 每周精选:近期推荐系统论文及进展
LibRec智能推荐
30+阅读 · 2018年2月5日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
65+阅读 · 2021年6月18日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Nature 一周论文导读 | 2019 年 6 月 27 日
科研圈
8+阅读 · 2019年7月7日
Nature 一周论文导读 | 2019 年 5 月 30 日
科研圈
15+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 每周精选:近期推荐系统论文及进展
LibRec智能推荐
30+阅读 · 2018年2月5日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员