Misleading or false information has been creating chaos in some places around the world. To mitigate this issue, many researchers have proposed automated fact-checking methods to fight the spread of fake news. However, most methods cannot explain the reasoning behind their decisions, failing to build trust between machines and humans using such technology. Trust is essential for fact-checking to be applied in the real world. Here, we address fact-checking explainability through question answering. In particular, we propose generating questions and answers from claims and answering the same questions from evidence. We also propose an answer comparison model with an attention mechanism attached to each question. Leveraging question answering as a proxy, we break down automated fact-checking into several steps -- this separation aids models' explainability as it allows for more detailed analysis of their decision-making processes. Experimental results show that the proposed model can achieve state-of-the-art performance while providing reasonable explainable capabilities.


翻译:错误领导信息或虚假信息在世界各地的某些地区造成了混乱。为了缓解这一问题,许多研究人员提出了自动事实核对方法,以打击假新闻的传播。然而,大多数方法无法解释其决定背后的理由,无法用这种技术在机器和人类之间建立信任。信任对于在现实世界中进行事实核对至关重要。在这里,我们通过回答问题来解决事实核对解释问题。特别是,我们建议从索赔中提出问题和答案,并从证据中回答同样的问题。我们还提议了一个回答比较模型,并附着一个关注每个问题的机制。我们利用解答问题作为代理,我们将自动化事实核对分为几个步骤 -- -- 这种分离辅助模型的解释性,因为它有助于更详细地分析其决策过程。实验结果显示,拟议的模型既能达到最先进的表现,又能提供合理的解释能力。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
11+阅读 · 2019年8月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Generating Rationales in Visual Question Answering
Arxiv
5+阅读 · 2020年4月4日
QuAC : Question Answering in Context
Arxiv
4+阅读 · 2018年8月21日
Arxiv
5+阅读 · 2018年3月16日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员