An important aspect of AI design and ethics is to create systems that reflect aggregate preferences of the society. To this end, the techniques of social choice theory are often utilized. We propose a new social choice function motivated by the PageRank algorithm. The function ranks voting options based on the Condorcet graph of pairwise comparisons. To this end, we transform the Condorcet graph into a Markov chain whose stationary distribution provides the scores of the options. We show how the values in the stationary distribution can be interpreted as quantified aggregate support for the voting options, to which the community of voters converges through an imaginary sequence of negotiating steps. Because of that, we suggest the name "convergence voting" for the new voting scheme, and "negotiated community support" for the resulting stationary allocation of scores. Our social choice function can be viewed as a consensus voting method, sitting somewhere between Copeland and Borda. On the one hand, it does not necessarily choose the Condorcet winner, as strong support from a part of the society can outweigh mediocre uniform support. On the other hand, the influence of unpopular candidates on the outcome is smaller than in the primary technique of consensus voting, i.e., the Borda count. We achieve that without having to introduce an ad hoc weighting that some other methods do.


翻译:AI 设计和伦理的一个重要方面是创建反映社会总体偏好的制度。 为此,经常使用社会选择理论的技术。 我们提出由PageRank算法驱动的新的社会选择功能。 功能将基于Condorcet图的双向比较的投票选项排序。 为此, 我们将 Condorcet 图形转换成一个Markov 链, 固定分布提供了选项的分数。 我们显示, 固定分布中的数值如何可以被解释为对投票选项的量化总体支持, 选民群体通过一系列想象的谈判步骤聚集到这些选项中。 由于这个原因, 我们为新的投票计划推荐了“ convergle 投票” 的名称, 并为由此产生的得分固定分配提出了“ 谈判社区支持 ” 。 为此, 我们的社会选择功能可以被视为一种协商一致的投票方法, 位于科佩兰和博尔达之间。 一方面, 我们不一定选择Condorcet 获胜者, 作为社会一部分的有力支持, 而不是中等的一致支持。 另一方面, 不受波普尔卡候选人对结果的影响, 在不采用某种特定的方法上, 。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年4月3日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员