We study the change detection problem with an unknown post-change distribution. Under this constraint, the unknown change in the distribution of observations may occur in many ways without much structure on the observations, whereas, before the change point, a false alarm (outlier) is highly structured, following a particular sample path. We first characterize these likely events for the deviation and propose a method to test the empirical distribution, relative to the most likely way for it to occur as an outlier. We benchmark our method with finite moving average (FMA) and generalized likelihood ratio tests (GLRT) under 4 different performance criteria including the run time time complexity. Finally, we apply our method on economic market indicators and climate data. Our method successfully captures the regime shifts during times of historical significance for the markets and identifies the current climate change phenomenon to be a highly likely regime shift rather than a random event.
翻译:我们以变化后分布不明的方式研究变化探测问题。在这种制约下,观测分布的未知变化可能在许多方面发生,在观察上没有多少结构,而在改变点之前,假警报(异常)的结构高度结构化,遵循一个特定的样本路径。我们首先对这些偏离的可能事件进行定性,并提议一种方法来测试经验分布,相对于最有可能发生的异常情况。我们用有限的移动平均(FMA)和普遍概率比测试(GLRT)来衡量我们的方法,根据4种不同的性能标准,包括运行时间复杂性。最后,我们在经济市场指标和气候数据上应用了我们的方法。我们的方法成功地捕捉到了对市场具有历史意义的时期的制度变化,并确定当前的气候变化现象是一种极有可能发生的制度变化,而不是随机事件。