While it remains a taboo topic, gender-based violence (GBV) undermines the health, dignity, security and autonomy of its victims. Many factors have been studied to generate or maintain this kind of violence, however, the influence of the media is still uncertain. Here, we use Machine Learning tools to extrapolate the effect of the news in GBV. By feeding neural networks with news, the topic information associated with each article can be recovered. Our findings show a relationship between GBV news and public awareness, the effect of mediatic GBV cases, and the intrinsic thematic relationship of GBV news. Because the used neural model can be easily adjusted, this also allows us to extend our approach to other media sources or topics
翻译:虽然性别暴力仍然是一个禁忌话题,但它破坏了受害者的健康、尊严、安全和自主性,已经研究了许多因素来产生或维持这种暴力,但是媒体的影响仍然不确定。在这里,我们使用机器学习工具来推断新闻在性别暴力中的影响。通过向神经网络提供新闻,每篇文章中的主题信息都可以得到恢复。我们的调查结果显示性别暴力新闻与公众意识之间的关系、性别暴力调解案件的影响以及性别暴力新闻的内在主题关系。由于所使用的神经模型可以很容易地调整,这也使我们能够将我们的方法扩大到其他媒体来源或专题。