Machine Learning (ML) provides important techniques for classification and predictions. Most of these are black-box models for users and do not provide decision-makers with an explanation. For the sake of transparency or more validity of decisions, the need to develop explainable/interpretable ML-methods is gaining more and more importance. Certain questions need to be addressed: How does an ML procedure derive the class for a particular entity? Why does a particular clustering emerge from a particular unsupervised ML procedure? What can we do if the number of attributes is very large? What are the possible reasons for the mistakes for concrete cases and models? For binary attributes, Formal Concept Analysis (FCA) offers techniques in terms of intents of formal concepts, and thus provides plausible reasons for model prediction. However, from the interpretable machine learning viewpoint, we still need to provide decision-makers with the importance of individual attributes to the classification of a particular object, which may facilitate explanations by experts in various domains with high-cost errors like medicine or finance. We discuss how notions from cooperative game theory can be used to assess the contribution of individual attributes in classification and clustering processes in concept-based machine learning. To address the 3rd question, we present some ideas on how to reduce the number of attributes using similarities in large contexts.
翻译:机器学习(ML) 提供了重要的分类和预测技术。 其中大部分是用户的黑盒模型,没有为决策者提供解释。 为了透明度或决定的更大有效性,需要发展可解释/可解释 ML- 方法越来越重要。 一些问题需要解决: ML 程序如何为某个特定实体提供该类? 为何某个特定组群来自某个不受监督的 ML 程序? 如果属性的数量非常大, 我们该怎么办? 具体案例和模型出错的可能原因是什么? 对于二进制属性, 正式概念分析(FCA) 提供正式概念意图方面的技术, 从而为模型预测提供合理的理由。 然而, 从可解释的机器学习角度看, 我们仍然需要向决策者提供个体属性对某一特定对象分类的重要性, 这可能便利诸如医药或金融等不同领域的专家解释。 我们讨论了如何利用合作游戏理论来评估当前分类和组合过程中个体属性的贡献? 如何在基于概念的模型背景下,利用大型特性学习我们如何降低概念的模型。