This tutorial shows how to build, fit, and criticize disease transmission models in Stan, and should be useful to researchers interested in modeling the SARS-CoV-2 pandemic and other infectious diseases in a Bayesian framework. Bayesian modeling provides a principled way to quantify uncertainty and incorporate both data and prior knowledge into the model estimates. Stan is an expressive probabilistic programming language that abstracts the inference and allows users to focus on the modeling. As a result, Stan code is readable and easily extensible, which makes the modeler's work more transparent. Furthermore, Stan's main inference engine, Hamiltonian Monte Carlo sampling, is amiable to diagnostics, which means the user can verify whether the obtained inference is reliable. In this tutorial, we demonstrate how to formulate, fit, and diagnose a compartmental transmission model in Stan, first with a simple Susceptible-Infected-Recovered (SIR) model, then with a more elaborate transmission model used during the SARS-CoV-2 pandemic. We also cover advanced topics which can further help practitioners fit sophisticated models; notably, how to use simulations to probe the model and priors, and computational techniques to scale-up models based on ordinary differential equations.
翻译:这个指导性文件展示了如何在斯坦建立、适应和批评疾病传播模式,对于有兴趣在巴伊西亚框架内模拟SARS-COV-2大流行和其他传染病的研究人员应该有用。 巴伊西亚模型提供了一种原则性的方法,可以量化不确定性,并将数据及先前知识纳入模型估计。斯坦是一种直观的概率性编程语言,可以摘述推论,使用户能够集中关注模型。因此,斯坦代码可以读,易于推广,从而使模型工作更加透明。此外,斯坦的主要推论引擎汉密尔顿·蒙特卡洛取样也易于进行诊断,这意味着用户可以核实所获得的推论是否可靠。在这个教义中,我们演示如何在斯坦设计、适应和诊断一个分包传播模式,首先使用简单的可感知-感染(SIR)模型,然后使用一个在SARS-COV-2大流行期间使用的更为精细的传输模式。我们还涵盖能够进一步帮助从业人员适应复杂模型的先进课题,也就是说,如何在先前的模型和比例上使用模拟模型。