As a revolutionary paradigm for controlling wireless channels, reconfigurable intelligent surfaces (RISs) have emerged as a candidate technology for future 6G networks. However, due to the multiplicative fading effect, RISs only achieve a negligible capacity gain in many scenarios with strong direct links. In this paper, the concept of active RISs is proposed to overcome this fundamental limitation. Unlike the existing passive RISs that reflect signals without amplification, active RISs can amplify the reflected signals. We develop a signal model for active RISs, which is validated through experimental measurements. Based on this model, we formulate the sum-rate maximization problem for active RIS aided multiple-input multiple-output (MIMO) systems and a precoding algorithm is proposed to solve this problem. Results show that, in a typical wireless system, the existing passive RISs can realize only a negligible sum-rate gain of 3\%, while the proposed active RISs can achieve a significant sum-rate gain of 108\%, thus overcoming the multiplicative fading effect.


翻译:作为控制无线信道的革命范式,可重新配置的智能表面(RIS)已成为未来6G网络的候选技术,然而,由于倍增式衰减效应,RIS在许多情况中只能取得微不足道的能力,而且具有很强的直接联系。在本文件中,主动的RIS概念是为了克服这一基本限制而提出的。与现有反映信号而没有放大的被动的RIS概念不同,主动的RIS可以扩大反射信号。我们为主动的RIS开发了一个信号模型,通过实验测量加以验证。基于这一模型,我们为主动的RIS辅助的多产出(MIMO)系统制定了总和率最大化问题,并提出了解决这一问题的预编码算法。结果显示,在典型的无线系统中,现有被动的RIS只能实现微小的总和率3 ⁇ 的收益,而拟议的主动的RIS则能够取得108 ⁇ 的重大总和收益,从而克服了多法化效应。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2020年12月4日
【经典书】Python金融大数据分析,566页pdf
专知会员服务
122+阅读 · 2020年8月1日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月26日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2020年12月4日
【经典书】Python金融大数据分析,566页pdf
专知会员服务
122+阅读 · 2020年8月1日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员