Reconfigurable intelligent surfaces (RISs) can assist the wireless systems in providing reliable and low-latency links to realize the requirements in Industry 4.0. In this paper, the practical phase shift optimization in a RIS-aided ultra-reliable and low-latency communication (URLLC) system at a factory setting is performed by applying a novel deep reinforcement learning (DRL) algorithm named as twin-delayed deep deterministic policy gradient (TD3). First, the system achievable rate in finite blocklength (FBL) regime is identified for each actuator then, the problem is formulated where the objective is to maximize the total achievable FBL rate, subject to non-linear amplitude response and the phase shift values constraint. Since the amplitude response equality constraint is highly non-convex and non-linear, we employ the TD3 to tackle the problem. The considered method relies on interacting RIS with industrial scenario by taking actions which are the phase shifts at the RIS elements, to maximize the total FBL rate. We assess the performance loss of the system when the RIS is non-ideal, i.e., non-linear amplitude response with/without phase quantization and compare it with ideal RIS. The numerical results show that optimizing phase shifts in non-ideal RIS via the considered TD3 method is highly beneficial to improve the performance.


翻译:重新配置的智能表面(RIS)可以帮助无线系统提供可靠和低时长的连接,以实现工业4.0的要求。 在本文件中,在工厂环境下,在有RIS辅助的超弹性和低纬度通信(URLLC)系统中,通过应用被称为双延迟深度确定性政策梯度(TD3)的新颖的深度强化学习(DRL)算法(DRL)算法,协助无线系统提供可靠和低时长(FBL)系统的可实现率,以实现工业4.0的要求。在设计问题时,目标是最大限度地实现完全可实现的FBL率,但须服从非线性加速反应和阶段转移值限制。由于对振动反应平等的限制是高度非电流和非线性能,因此我们使用TD3算法来解决这个问题。所考虑的方法取决于通过在RIS元素的阶段变化中采取的行动与工业情景相互作用,以尽量提高总的FBL率。我们评估了系统在被考虑的RIS总可实现的可实现的FBL率时的绩效损失,但需视其为非双向水平、不进行优化的平流化的平流的TRISPS-A/平面平流的平面平面平面平流, 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
4+阅读 · 2018年11月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2021年6月24日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
4+阅读 · 2018年11月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员