We study quantile trend filtering, a recently proposed method for nonparametric quantile regression with the goal of generalizing existing risk bounds known for the usual trend filtering estimators which perform mean regression. We study both the penalized and the constrained version (of order $r \geq 1$) of univariate quantile trend filtering. Our results show that both the constrained and the penalized version (of order $r \geq 1$) attain the minimax rate up to log factors, when the $(r-1)$th discrete derivative of the true vector of quantiles belongs to the class of bounded variation signals. Moreover we also show that if the true vector of quantiles is a discrete spline with a few polynomial pieces then both versions attain a near parametric rate of convergence. Corresponding results for the usual trend filtering estimators are known to hold only when the errors are sub-Gaussian. In contrast, our risk bounds are shown to hold under minimal assumptions on the error variables. In particular, no moment assumptions are needed and our results hold under heavy-tailed errors. Our proof techniques are general and thus can potentially be used to study other nonparametric quantile regression methods. To illustrate this generality we also employ our proof techniques to obtain new results for multivariate quantile total variation denoising and high dimensional quantile linear regression.
翻译:我们研究微量趋势过滤,这是最近提出的一种非对称微量回归方法,目标是将现有风险界限普遍化,这是通常趋势过滤的测算器所知道的现有风险界限,进行中度回归。我们既研究受罚方和受限方(按美元\geq 1美元排序)的单亚量趋势过滤。我们的结果显示,受限方和受罚方(按美元\geq 1美元排序)的受限方(按美元=Geq 1美元排序)都达到了记录系数的微量比例。相比之下,当真量体的真量矢量的离散衍生物属于受约束的线性变异信号类别时,我们的风险界限将显示为最小的假设。此外,如果真量的微量矢量矢量变量是一个离散的样条线,同时有几个多位数块块的受限版本,那么这两个版本的趋同度趋势过滤器就会达到近的相近的趋近率率。只有当错误为次于Gaussian,我们的风险界限将显示在最低的误差变量之下。特别是,没有一刻时,我们使用的精确的假设是用于一般的递化法的推算结果。