As a model-free optimization and decision-making method, deep reinforcement learning (DRL) has been widely applied to the filed of energy management in energy Internet. While, some DRL-based energy management schemes also incorporate the prediction module used by the traditional model-based methods, which seems to be unnecessary and even adverse. In this work, we implement the standard energy management scheme with prediction using supervised learning and DRL, and the counterpart without prediction using end-to-end DRL. Then, these two schemes are compared in the unified energy management framework. The simulation results demonstrate that the energy management scheme without prediction is superior over the scheme with prediction. This work intends to rectify the misuse of DRL methods in the field of energy management.
翻译:作为一种无模式优化和决策方法,深入强化学习(DRL)被广泛应用于能源互联网能源管理的归档,而一些基于DRL的能源管理计划也纳入了传统的基于模式的方法所使用的预测模块,这些模式似乎没有必要,甚至不利;在这项工作中,我们实施标准能源管理计划,利用监督的学习和DRL进行预测,而对手则不使用终端到终端的DRL进行预测。然后,在统一的能源管理框架中比较这两个计划。模拟结果表明,没有预测的能源管理计划优于预测计划,这项工作旨在纠正能源管理领域滥用DRL方法的情况。