The traditional Internet has encountered a bottleneck in allocating network resources for emerging technology needs. Network virtualization (NV) technology as a future network architecture, the virtual network embedding (VNE) algorithm it supports shows great potential in solving resource allocation problems. Combined with the efficient machine learning (ML) algorithm, a neural network model close to the substrate network environment is constructed to train the reinforcement learning agent. This paper proposes a two-stage VNE algorithm based on deep reinforcement learning (DRL) (TS-DRL-VNE) for the problem that the mapping result of existing heuristic algorithm is easy to converge to the local optimal solution. For the problem that the existing VNE algorithm based on ML often ignores the importance of substrate network representation and training mode, a DRL VNE algorithm based on full attribute matrix (FAM-DRL-VNE) is proposed. In view of the problem that the existing VNE algorithm often ignores the underlying resource changes between virtual network requests, a DRL VNE algorithm based on matrix perturbation theory (MPT-DRL-VNE) is proposed. Experimental results show that the above algorithm is superior to other algorithms.
翻译:传统互联网在为新兴技术需要分配网络资源方面遇到了瓶颈。 网络虚拟化技术(NV)技术作为未来的网络结构,它所支持的虚拟网络嵌入算法在解决资源分配问题方面显示出巨大的潜力。 与高效机器学习算法(ML)结合,建造了接近基底网络环境的神经网络模型,以培训强化学习代理器。 本文提出基于深强化学习(DRL)(TS-DRL-VNE)的两阶段VNE算法,因为现有超电子算法的绘图结果很容易与当地的最佳解决办法汇合。 关于基于ML的现有VNE算法往往忽视子网络代表性和培训模式的重要性的问题,提出了基于完整属性矩阵(FAM-DRL-VNE)的DRL VNE算法。 鉴于现有的VNE算法往往忽视虚拟网络要求之间的基本资源变化,因此建议采用基于矩阵渗透理论(MPT-DRL-VNE)的DR算法。 实验结果显示上面的其他算法是上面的高级算法。