This paper explores applying the wav2vec2 framework to speaker recognition instead of speech recognition. We study the effectiveness of the pre-trained weights on the speaker recognition task, and how to pool the wav2vec2 output sequence into a fixed-length speaker embedding. To adapt the framework to speaker recognition, we propose a single-utterance classification variant with CE or AAM softmax loss, and an utterance-pair classification variant with BCE loss. Our best performing variant, w2v2-aam, achieves a 1.88% EER on the extended voxceleb1 test set compared to 1.69% EER with an ECAPA-TDNN baseline. Code is available at https://github.com/nikvaessen/w2v2-speaker.


翻译:本文探讨了将 wav2vec2 框架应用于语音识别而不是语音识别。 我们研究了预先培训的对语音识别任务重量的有效性,以及如何将 wav2vec2 输出序列整合成固定长度的语音嵌入器。 为了调整框架以适应语音识别, 我们提议了一个带有 CE 或 AAM 软麦斯损失的单一通量分类变量, 以及带有 BCE 损失的超量分类变量。 我们最好的功能变量 w2v2-aam 在扩展的 voxceleb1 测试组上实现了1.88% EER, 相比之下为1.69% EER, 其基准为 ECAPA-TDNN 。 代码可在 https://github. com/nikvaessen/w2v2-speaker 上查阅。

0
下载
关闭预览

相关内容

说话人识别(Speaker Recognition),或者称为声纹识别(Voiceprint Recognition, VPR),是根据语音中所包含的说话人个性信息,利用计算机以及现在的信息识别技术,自动鉴别说话人身份的一种生物特征识别技术。 说话人识别研究的目的就是从语音中提取具有说话人表征性的特征,建立有 效的模型和系统,实现自动精准的说话人鉴别。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Parameter-Efficient Fine-tuning 相关工作梳理
PaperWeekly
1+阅读 · 2022年3月19日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Parameter-Efficient Fine-tuning 相关工作梳理
PaperWeekly
1+阅读 · 2022年3月19日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员