We study the problem of distributed zero-order optimization for a class of strongly convex functions. They are formed by the average of local objectives, associated to different nodes in a prescribed network of connections. We propose a distributed zero-order projected gradient descent algorithm to solve this problem. Exchange of information within the network is permitted only between neighbouring nodes. A key feature of the algorithm is that it can query only function values, subject to a general noise model, that does not require zero mean or independent errors. We derive upper bounds for the average cumulative regret and optimization error of the algorithm which highlight the role played by a network connectivity parameter, the number of variables, the noise level, the strong convexity parameter of the global objective and certain smoothness properties of the local objectives. When the bound is specified to the standard undistributed setting, we obtain an improvement over the state-of-the-art bounds, due to the novel gradient estimation procedure proposed here. We also comment on lower bounds and observe that the dependency over certain function parameters in the bound is nearly optimal.


翻译:我们研究的是,对一组强电流功能进行零顺序分配优化的问题。它们是由当地目标的平均值构成的,与指定连接网络中的不同节点相关。我们建议采用分布零顺序的预测梯度下降算法来解决这个问题。网络内部的信息交流只允许相邻节点之间进行。算法的一个关键特征是,它只能查询功能值,不受一般噪音模型的限制,而不需要零平均或独立的错误。我们从测算法的平均累积遗憾和优化误差中得出上限,该算法突出网络连通参数的作用、变量数量、噪音水平、全球目标的强共性参数以及地方目标的某些平稳性。当约束与标准的无分布环境挂钩时,我们因此处提议的新的梯度估计程序而改进了技术的状态界限。我们还评论了较低界限,并指出对约束中某些功能参数的依赖性几乎是最佳的。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Policy Targeting under Network Interference
Arxiv
0+阅读 · 2021年3月25日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员