In Maples et al. (2018) we introduced Robust Chauvenet Outlier Rejection, or RCR, a novel outlier rejection technique that evolves Chauvenet's Criterion by sequentially applying different measures of central tendency and empirically determining the rejective sigma value. RCR is especially powerful for cleaning heavily-contaminated samples, and unlike other methods such as sigma clipping, it manages to be both accurate and precise when characterizing the underlying uncontaminated distributions of data sets, by using decreasingly robust but increasingly precise statistics in sequence. For this work, we present RCR from a software standpoint, newly implemented as a Python package while maintaining the speed of the C++ original. RCR has been well-tested, calibrated and simulated, and it can be used for both one-dimensional outlier rejection and $n$-dimensional model-fitting, with or without weighted data. RCR is free to use for academic and non-commercial purposes, and the code, documentation and accompanying web calculator can be found and easily used online at https://github.com/nickk124/RCR
翻译:在马普莱斯等人(2018年)中,我们引入了一种新颖的超然拒绝技术,即强力Chauvenet 外部拒绝技术(RCR),这种技术通过相继应用不同的中央趋势计量法和从经验上确定否定的西格玛值来演进Chauvenet标准。RCR在清洁污染严重的样品方面特别强大,与像Sigma剪切等其他方法不同,在描述未污染的数据集的原始分布时,它能够既准确又精确,在顺序上使用较弱但越来越精确的统计数据。对于这项工作,我们从软件的角度介绍RCR,新作为Python软件包实施,同时保持了C+++的原速度。RCRR经过了良好的测试、校准和模拟,可以用于单维外部拒绝和一元模型的安装,可以使用或不使用加权数据。RCRR可以免费用于学术和非商业目的,在https://github.com/nick124/RCR)可以找到代码、文件和随附的网络计算器,并且很容易在网上使用。 http://githhub.com/nk124/RCR。