This paper presents the design of a pose estimator for a four wheel independent steer four wheel independent drive (4WIS4WID) wall climbing mobile robot, based on the fusion of multimodal measurements, including wheel odometry, visual odometry, and an inertial measurement unit (IMU) data using Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). The pose estimator is a critical component of wall climbing mobile robots, as their operational environment involves carrying precise measurement equipment and maintenance tools in construction, requiring information about pose on the building at the time of measurement. Due to the complex geometry and material properties of building facades, the use of traditional localization sensors such as laser, ultrasonic, or radar is often infeasible for wall-climbing robots. Moreover, GPS-based localization is generally unreliable in these environments because of signal degradation caused by reinforced concrete and electromagnetic interference. Consequently, robot odometry remains the primary source of velocity and position information, despite being susceptible to drift caused by both systematic and non-systematic errors. The calibrations of the robot's systematic parameters were conducted using nonlinear optimization and Levenberg-Marquardt methods as Newton-Gauss and gradient-based model fitting methods, while Genetic algorithm and Particle swarm were used as stochastic-based methods for kinematic parameter calibration. Performance and results of the calibration methods and pose estimators were validated in detail with experiments on the experimental mobile wall climbing robot.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员