This paper presents new machine learning approaches to approximate the solution of optimal stopping problems. The key idea of these methods is to use neural networks, where the hidden layers are generated randomly and only the last layer is trained, in order to approximate the continuation value. Our approaches are applicable for high dimensional problems where the existing approaches become increasingly impractical. In addition, since our approaches can be optimized using a simple linear regression, they are very easy to implement and theoretical guarantees can be provided. In Markovian examples our randomized reinforcement learning approach and in non-Markovian examples our randomized recurrent neural network approach outperform the state-of-the-art and other relevant machine learning approaches.
翻译:本文介绍了近似最佳制止问题解决方案的新机器学习方法。 这些方法的关键理念是使用神经网络,其中隐藏的层是随机生成的,只有最后一个层是经过培训的,以接近持续值。我们的方法适用于现有方法越来越不切实际的高维问题。此外,由于我们的方法可以使用简单的线性回归优化,因此很容易实施,并且可以提供理论保障。在Markovian的例子中,我们随机化的强化学习方法以及非马尔科维安的例子中,我们随机化的经常性神经网络方法超越了最先进的和其他相关的机器学习方法。