Reinforcement learning (RL) has achieved state-of-the-art performance in many scientific and applied problems. However, some complex tasks still are difficult to handle using a single model and algorithm. The highly popular ensemble reinforcement learning (ERL) has become an important method to handle complex tasks with the advantage of combining reinforcement learning and ensemble learning (EL). ERL combines several models or training algorithms to fully explore the problem space and has strong generalization characteristics. This study presents a comprehensive survey on ERL to provide the readers with an overview of the recent advances and challenges. The background is introduced first. The strategies successfully applied in ERL are analyzed in detail. Finally, we outline some open questions and conclude by discussing some future research directions of ERL. This survey contributes to ERL development by providing a guide for future scientific research and engineering applications.
翻译:强化学习(RL)在许多科学和应用问题中取得了最先进的成绩,然而,一些复杂的任务仍难以使用单一的模式和算法处理,高度流行的混合强化学习(ERL)已成为处理复杂任务的一个重要方法,其优点是将强化学习和混合学习(EL)结合起来。ERL将若干模型或培训算法结合起来,以充分探索问题空间,并具有很强的概括性特点。本研究报告对ERL进行了全面调查,以便向读者提供最新进展和挑战的概览。首先介绍了背景。对ERL成功应用的战略进行了详细分析。最后,我们概述了一些未决问题,并通过讨论ERL的未来研究方向来结束。这项调查为ERL的发展提供了未来科学研究和工程应用的指南。</s>