Anonymous peer review is used by the great majority of computer science conferences. OpenReview is such a platform that aims to promote openness in peer review process. The paper, (meta) reviews, rebuttals, and final decisions are all released to public. We collect 5,527 submissions and their 16,853 reviews from the OpenReview platform. We also collect these submissions' citation data from Google Scholar and their non-peer-reviewed versions from arXiv.org. By acquiring deep insights into these data, we have several interesting findings that could help understand the effectiveness of the public-accessible double-blind peer review process. Our results can potentially help writing a paper, reviewing it, and deciding on its acceptance.


翻译:绝大多数计算机科学会议都使用匿名同侪审查。 公开审查是一个旨在促进同侪审查进程公开性的平台。 公开审查(meta)审查、反驳和最终决定都公布于众。 我们从公开审查平台收集了5,527份呈件及其16,853份审查报告。 我们还从Google学者收集了这些呈件的引证数据,并从arxiv.org收集了它们未经同侪审查的版本。 通过深入了解这些数据,我们发现了若干有趣的发现,有助于了解公众可获取的双盲同侪审查过程的有效性。我们的结果可能有助于撰写论文,审查并决定是否接受。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ICLR2019 review结果出炉
专知
3+阅读 · 2018年11月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年5月1日
Arxiv
15+阅读 · 2019年9月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ICLR2019 review结果出炉
专知
3+阅读 · 2018年11月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员