Given point cloud input, the problem of 6-DoF grasp pose detection is to identify a set of hand poses in SE(3) from which an object can be successfully grasped. This important problem has many practical applications. Here we propose a novel method and neural network model that enables better grasp success rates relative to what is available in the literature. The method takes standard point cloud data as input and works well with single-view point clouds observed from arbitrary viewing directions.
翻译:考虑到点云的输入, 6- DoF 抓取问题代表探测到的是 SE(3) 中发现一组可以成功捕捉对象的手姿势。 这个重要问题有许多实际应用。 我们在这里提出了一个新颖的方法和神经网络模型, 能够比文献中的可用数据更好地掌握成功率。 该方法将标准点云数据作为输入, 并且对从任意查看方向观测到的单视点云运行良好 。