In this paper we present the Amharic Speech Emotion Dataset (ASED), which covers four dialects (Gojjam, Wollo, Shewa and Gonder) and five different emotions (neutral, fearful, happy, sad and angry). We believe it is the first Speech Emotion Recognition (SER) dataset for the Amharic language. 65 volunteer participants, all native speakers, recorded 2,474 sound samples, two to four seconds in length. Eight judges assigned emotions to the samples with high agreement level (Fleiss kappa = 0.8). The resulting dataset is freely available for download. Next, we developed a four-layer variant of the well-known VGG model which we call VGGb. Three experiments were then carried out using VGGb for SER, using ASED. First, we investigated whether Mel-spectrogram features or Mel-frequency Cepstral coefficient (MFCC) features work best for Amharic. This was done by training two VGGb SER models on ASED, one using Mel-spectrograms and the other using MFCC. Four forms of training were tried, standard cross-validation, and three variants based on sentences, dialects and speaker groups. Thus, a sentence used for training would not be used for testing, and the same for a dialect and speaker group. The conclusion was that MFCC features are superior under all four training schemes. MFCC was therefore adopted for Experiment 2, where VGGb and three other existing models were compared on ASED: RESNet50, Alex-Net and LSTM. VGGb was found to have very good accuracy (90.73%) as well as the fastest training time. In Experiment 3, the performance of VGGb was compared when trained on two existing SER datasets, RAVDESS (English) and EMO-DB (German) as well as on ASED (Amharic). Results are comparable across these languages, with ASED being the highest. This suggests that VGGb can be successfully applied to other languages. We hope that ASED will encourage researchers to experiment with other models for Amharic SER.


翻译:在本文中,我们展示了阿姆哈拉语言情感数据集(ASED),该数据集涵盖四种方言(Gojjam、Wollo、Shewa和Gonder)和五种不同的情感(中立、恐惧、快乐、悲哀和愤怒)。我们认为这是阿姆哈拉语首个语音情感识别数据集。65名志愿者参与者(所有本地演讲者,记录了2,474个声音样本,两至四秒钟长度。8名法官将情感分配给样本,且协议级别很高(Fleis kappa=0.8)。由此产生的数据集可以免费下载。接下来,我们开发了众所周知的VGGM模型的四层变式。我们称之为VGB。然后,我们用VGBS(S)做了三次实验。首先,我们调查了Mel-spectrogrogram特征或Mel-频 Cepstral 系数(MFCC) 是否为Amaricrial 工作最优。这是通过在ASED上培训两个VGB模型, 使用M-SB模型, 和MFC(我们使用MED) 三个变数模型进行这种模拟测试, 和变数模型。一个测试了。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员